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ABSTRACT 

 

In conducting materials such as metallic and semiconductor 

systems, coherent oscillations of collective free charge may 

be observed at frequencies usually in the ultraviolet spectrum. 

This phenomenon affects the permittivity response, which 

can assume negative values and allows sub-wavelength 

confinement of light, thus, enabling a wide range of 

applications. The rapid oscillations of the electron density can 

be quantized wherein a quantum of plasma oscillation is 

named plasmon. Due to this quantization, it is necessary to 

revise concepts of both Quantum Mechanics and the 

Plasmonics field. For a metal-dielectric interface, the 

coupling between light modes and plasmons confined at the 

interface gives origin to the quasi-particle surface plasmon 

polariton (SPP). The SPP represent the principal subject of 

this dissertation. The analysis of its permittivity response is 

performed either for the case where a local medium is 

assumed or for the scenario where the spatial dispersion is 

accounted. The quantization of the SPP electromagnetic field 

in the electrostatic regime is derived for both approaches. The 

spontaneous emission of SPP in the nonlocal approach is also 

subject of study for a system which consists in a two-level 

atom in the vicinity of a metal slab. The interaction between 

the atom and the SPP waves is examined, taking into account 

a local description of the SPP in the quasi-static 

approximation. Contrasts between strong and weak coupling 

regimes regarding the interaction of these two systems are 

also discussed. 

Index Terms— Plasmon, Plasma Frequency, Surface 

Plasmon-Polariton, Charge Density Oscillation, Quantum 

Mechanics, Operators, Quantum Electrodynamics (QED), 

Harmonic Oscillator, Spontaneous Emission, Non-local 

Surface Plasmons 

 

1. INTRODUCTION 

 

The description of physical macro scale systems is typically 

performed by resorting to the Newtonian laws, which convey 

a simple and straightforward analysis. However, there are 

some interesting systems in scales of a few nanometers for 

which this classical approach does not convey the correct 

physical reality. In these systems a quantum mechanical 

description must be employed to accurately capture its 

dynamics. 

Hence, this work aims to study systems within the 

Quantum Plasmonics [1] research field, which procures to 

study plasmonic systems using Quantum Mechanics. The 

plasmons consist in a coherent oscillation of the free density 

charge, that emerge at high frequencies (usually in the visible 

and ultraviolet spectra) in conducting materials such as 

metals and semiconductors [2]. The interest in this field is 

related with the outstanding range of possible practical 

applications, due to their unique characteristics, such as the 

subwavelength confinement and the capacity to support 

waves that go beyond diffraction limit [3], the spectroscopy 

[4] analysis, light emitters, super lenses [5] and biosensors are 

some of the applications explained by Plasmonics. 
The plasmons may appear in different scenarios giving 

rise to different phenomena [6], e.g., the bulk plasmons, the 

localized plasmons and the surface plasmon-polaritons 

(SPP), being the latter one of most concerns in this work. 

This work proposes to study the interaction of a quantum 

object (e.g., an atom) that is placed in the vicinity of a metal 

slab, which is capable of supporting SPP waves. To conduct 

this analysis, it is introduced the quantization of the SPP 

electromagnetic field in the electrostatic regime, either using 

a local description of the medium and one where the spatial 

dispersion response is considered. The coupling between 

these two systems can either fall into the strong or the weak 

regimes. Therefore, the temporal evolution of the system is 

examined in both regimes. In addition, is computed the 

probability of finding the atom in an excited and ground states 

over time. 

As an initial approach, the problem is considered to have 

no loss channels and the dynamics of the system are simply 

obtained to solving the losses to the system through 

introduced in the interaction between the atom and the metal 

slab, since the approach developed to solve the Schrödinger 

equation for the exact Hamiltonian of the problem. The 

inclusion of losses is made heuristically by considering a term 

that accounts with radiation dispersed via spontaneous 

emission. 

This paper is organized as follows. In Section 2 the main 

concepts of Quantum Mechanics and the quantization of the 

electromagnetic field are discussed. It is also introduced the 

description of surface plasmons (SPP) and some of its 

applications. Section 3 addresses the model used to describe 

the non-local SPP. The light-matter interactions are analyzed 

in Section 4, as well as the spontaneous emission of non-local 



SPP. In Section 5 is mentioned the interaction in the quasi-

static approximation between a two-level atom (TLA) with 

the metal slab (that supports local SPP). Chapter 6 is 

dedicated for the conclusions. 

 

2. MAIN CONCEPTS 

 

2.1. Quantum Mechanic Concepts 

 

Quantum theory [7] enlightens that the state of a system can 

be described by a mathematical complexed valued 

wavefunction, generally denoted by 𝜓(𝑥, 𝑡), which contains 

all the information within a system. Also, to every physical 

entity (observable) a corresponding Hermitian operator 

exists. The wavefunction is usually described in the basis 

given by linear expansion of the eigenstates, which are 

orthogonal between each other and correspond to the 

measurable states of the system. The states can be represented 

using a bra (⟨𝑖|)/ ket (|𝑖⟩) notation or by a wavefunction. 
 

 
𝑖ℏ

𝑑

𝑑𝑡
𝜓⃗ (𝑥, 𝑡) = 𝐇 𝜓⃗ (𝑥, 𝑡) 

(1) 

 

The time evolution of the system is dictated by the 

Schrödinger equation given in Eq. 1. Another way to solve 

the dynamics of the system is using the Heisenberg picture, 

where the time evolution is comprised in the operators and 

not in the states (as happens in the Schrödinger picture). 

 
 

𝐻𝐻.𝑂 = ∑ (
1

2
𝑚𝜔𝑛

2𝑥𝑛
2 +

1

2𝑚
𝑝𝑛

2)

𝜔𝑛>0

 (2) 

In addition, the quantization of the electric field can be 

made by considering a cavity terminated with periodic 

boundary conditions [8]. This method allows to decompose 

the radiation fields as a sum of normal field modes, each 

mode associated with a unique combination between a 

wavenumber k and polarization n. Inspecting the energy of 

each electromagnetic field mode is possible to notice a clear 

resemblance with the energy of the quantum harmonic 

oscillator problem [7] given in Eq. 2, where 𝑚 is the mass, 𝜔 

is the frequency of the harmonic oscillator, and 𝑥 and 𝑝 are 

the position and the momentum of the system, respectively.  
 

𝐅 = (
𝐄

𝐇
) = ∑  √

ℏ𝜔𝑛

2
𝜔𝑛>0

(𝐚𝒏𝐅𝐧(𝐫) + 𝐚𝐧
†𝐅𝐧

∗ (𝐫)) 
(3) 

Since this problem has a known solution it is made an 

equivalence between both problems, such that to each 

electromagnetic field mode an uncoupled harmonic oscillator 

is corresponded. Employing the creation (𝐚𝒏) and 

annihilation (𝐚𝐧
†
) operators the quantization of the 

electromagnetic field follows as in Eq. 3, where 𝐄 and 𝐇 

correspond to the electric and magnetic fields and ℏ is the 

reduced Planck constant. These bosonic operators allow to 

construct a solution for the eigenenrgies of the system. What 

is seen through the bosonic commutation relations, is that the 

the eigenergies for a given mode are disposed in a discrete 

ladder. Moreover, this ladder has an inferior eigenergy limit, 

corresponding to the ground state, while the upper limit is not 

bounded. In the ground state no photon is present, but if one 

applies the creation operator to this state, it is seen that the 

energy rises due to the emergence of one photon. Similarly, 

if the annihilation operator was applied to a state with 𝑛 

photons, the resulting system would contain 𝑛 − 1 photons. 

This quantization is only valid for non-dispersive media, 

and for the dispersive, a different normalization needs to be 

employed, as discussed further. 

 

2.2. Plasmonics 

 

2.2.1. Drude’s Model 

 

In good conductors, for energies near the  Fermi level, a 

coherent motion of the free electrons is observed [6]. The 

plasmon is the quantum of free electrons oscillation waves, 

and may be perceived as a collection of electrons, which is 

described as a quasiparticle with discrete energy, identical to 

a photon for electromagnetic oscillations. Although one 

should use a quantum model to characterize the system, 

almost all the important properties can be unveiled with a 

classical free electron model. 

This phenomenon emerges in different circumstances, 

such as volume plasmons, surface plasmon polaritons, local  
 

𝜀𝑚 = 1 −
𝜔𝑝

2

𝜔2 − 𝑖𝜔𝛾 
 ,  

(4) 

 

In order to study the plasmons behavior, it is crucial to 

capture the free electrons response (permittivity) in metals to 

an external electric field. This can be attained by using the 

Drude's model, which is a particular case of Lorentz model 

with no restoring force (since the electrons are free). This 

model describes the motion, in a metal, of the electron “gas” 

moving against a background of heavy immobile ions using 

the Newton laws of motion. The relative permittivity formula 

is then obtained and can be found in Eq. 4, where 𝜔𝑝 

corresponds to the plasma frequency, 𝜔 is the frequency and 

𝛾 is the damping rate, which accounts with the material 

losses. 
 

𝜔 = √𝑐2𝑘2 + 𝜔𝑝
2 

(5) 

 

The dispersion equation, given in Eq. 5, shows that for 

frequencies above the plasma frequency the system comports 

transversal propagation modes and for frequencies near the 

plasma frequency longitudinal modes (for a thorough 

analysis consult [9]). The longitudinal wave corresponds to 

having 𝜖𝑚 = 0. 



 
Figure 1: Dispersion of k for Drude’s model containing the 

transversal and longitudinal propagation modes.  

2.2.1. Surface Plasmons 

 

The surface plasmon polaritons or simply surface plasmons 

are defined as the quanta of coupled oscillations between 

plasmons and polaritons (i.e., polarization waves from a 

dielectric) and are extremely confined on the interface 

between a metal and a dielectric as represented in Figure 2. 

Moreover, this coupling is mediated by an electromagnetic 

field. To analyze the dispersion of the SPP wave [10] one 

must solve Maxwell equations at the metal-dielectric 

interface for a solution that is supported without external 

excitation. The surface plasmon wave is characterized by a 

TM, which must exponentially decay along 𝑧  either to above 

or below the interface, since the wave is highly confined to 

the interface.  

 
Figure 2: Dielectric-metal interface scheme with SPP propagation 

[11]. 

By boundary conditions inspection it may be verified the 

dispersion relation in Eq. 6 and that such propagations occur 

only if 𝜀𝑚 (metal permittivity) and 𝜖𝑑  (dielectric 

permittivity) must have opposite signals [12]. Thus 𝜀𝑚 must 

be negative and imposing a non-evanescent 𝑘𝑥 mode, it 

follows that the only possible solution exists for 𝜀𝑚(𝜔) <
−𝜀𝑑(𝜔). The upper allowed frequency is obtained for 𝜀𝑑 +

𝜀𝑚(𝜔𝑠𝑝𝑝) = 0, which neglecting the damping term 𝛾 leads to 

the surface plasmon frequency 𝜔𝑠𝑝 =
𝜔𝑝

√1+𝜀𝑑
 . Figure 3 shows 

the dispersion curves for the surface plasmons in contrast to 

the bulk plasmon’s and the free space dispersion. 

 
Figure 3: Dispersion curves for photons, bulk plasmons and 

surface plasmons, where for the surface plasmons the convergence 

frequency is ωsp [11]. 

The SPP wavevector is always greater than the photon 

wavevector in the dielectric, which means that the surface 

plasmon cannot be excited through direct incident radiation. 

This can be overcome by radiating through a material (e.g. a 

prism) with a higher refraction index in a Kretschmann or 

Otto configuration [13]. 

 

2.2.1. Plasmonic Applications 

 

The local plasmons are metal nanoparticles its behavior is 

identical to the discussed for volume. Moreover, its resonant 

scattering power is sensible to dielectric constant changes of 

the environment which allows their usage in biological and 

chemical sensing and detection applications [13]. Therefore, 

by inserting metal nanoparticles into a biological sample, it is 

possible to measure the occurred shifts on the resonance 

frequency associated with certain chemicals and molecules. 

In addition, surface plasmon sensors are also a viable option 

to detect environmental changes for very short distances from 

the surface interface [14]. 

Another possible application of plasmons lies on Raman 

scattering spectroscopy[14], used to identify the chemical 

composition of a sample since the molecular vibrations 

energy spectrum provide a fingerprint-like characteristic. The 

Raman scattering effect is analogous to a FM modulation, 

where a monochromatic light behaves like a carrier and is 

modulated by the molecular vibrations (phonons). This 

process results in scattered radiation that suffers a frequency 

shift correspondent to the frequencies associated with the 

molecular oscillations. The uniqueness of the originated 

spectrum is related to the dependence of the molecular 

vibrations in its particular molecular structure (for a detailed 

description consult [15]).  
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𝑐
√

𝜀𝑑𝜀𝑚

𝜀𝑑 + 𝜀𝑚
 

(6) 

𝑘𝑥 =
𝜔

𝑐
√

𝜖𝑑𝜖𝑚

𝜖𝑑 + 𝜖𝑚
 



 
 

3. NON-LOCAL SURFACE PLASMONS 

 

The description of the plasmonic response assuming a 

homogeneous charge distribution along the metal slab is not 

always the most adequate approach due to the outmatching 

results when compared with the experimental ones [16]. 

Mechanisms such as the motion of single electrons and the 

repulsive Coulomb interactions between each other should be 

considered. These interactions provoke diffusion effects, 

which create a repelled motion of electrons from the areas 

with higher charge concentration [17], [18]. An immediate 

implication of this charge nonlocality is that the value of the 

electric polarization in a specific position (due to an external 

electric field) is no longer solely determined by the response 

of that point, but also of its surrounding region. 

Consequently, this implies the introduction of a new 

electron’s motion model for nonlocal media and the 

derivation of a dielectric spatial dispersive response [19]. 

A description for the permittivity response may be 

accomplished by using the Hydrodynamic model [16], [20]. 

The phenomenological parameter 𝛽 is introduced in this 

model to account with the diffusion effects and the derived 

permittivity follows as in Eq. 7, where 𝜀0is the vacuum 

permittivity. 

Analyzing the Maxwell equations is possible to infer that 

the wave modes of this system can either be transverse or 

longitudinal. The wavevector for the former wave is 𝑘‖ =

√𝑘𝑥
2 + 𝑘𝑦

2 and for the latter is given in Eq. 8.  

 

Considering the fields in the electrostatic regime it is 

possible to obtain write the electric field as the gradient of a 

scalar electric potential. Solving the Gauss’s law for no 

external charges is achieved the structure of the potential 

written in Eq. 9, where 𝐴1, 𝐴2 and 𝐵 are normalization 

constants. 

Furthermore, to obtain the dispersion relation, it no longer 

suffices to use the Maxwellian Boundary Conditions, because 

the nonlocality introduces a new degree of freedom in the 

material response. Then, it an Additional Boundary Condition 

(ABC) needs to be chosen. The ABC choice is the same found 

at [21], which is 𝐽  |𝑧=0 . 𝑛̂ = 0. 
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The dispersion equation obtained is presented in Eq. 10 

and its plot is illustrated in Figure 4. As one may confirm the 

nonlocalities introduce a slight slope in the dispersion relation 

graphic, which implies that for frequencies above the surface 

plasmon resonance (𝜔𝑠𝑝) the propagation of waves is 

possible, in contrast to the local scenario in the quasi-static 

approximation. 

 
Figure 4: Lossless Surface Plasmon dispersion curves with β/c =

100 where c is the speed of light. The green dashed curve 

corresponds to local scenario within the Drude model, the orange 

curve corresponds to nonlocal medium without approximations, 

the blue dashed curve corresponds to nonlocal medium in the 

electrostatic regime. 
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The density of states (DOS) [22] for the non-local SPP is 

also derived, using the periodic boundary conditions method 

and the formula acquired is in Eq. 11. In Figure 5 is plotted 

the DOS, from where is seen that the states are distributed for 

frequencies above 𝜔𝑠𝑝, unlike to the SPP in the electrostatic 

regime, where the DOS is all concentrated at 𝜔𝑠𝑝. 
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Figure 5: Density of States of a Nonlocal Surface Plasmon, which 

is plotted for the frequencies in the vicinity of the surface plasmon 

resonance. The frequency is normalized in relation to ωsp. 

 

4. QUANTUM MODEL DESCRIPTION OF LIGHT-

MATTER SYSTEMS  

 

The two-level approximation model [23] is the elected 

approach to take in quantum optics when dealing with atom-

light interactions, since it reproduces the important features 

[24] of the system such as Spontaneous Emission [25] and the 

Rabi oscillations [26]. This approximation considers that the 

real structure of an atom, containing infinite number of 

energy levels, can be well described at some extent by one 

having only two energy levels [23]. This approximation is 

supported by two other considerations [27], the Dipole 

Approximation (where its derivation is found at [7]) and the 

assumption that an external field has a near resonance 

frequency in relation to the atomic frequency 𝜔0 associated 

with the energy gap between these two atomic levels[28]. 

This last assumption is related with the Rotating Wave 

Approximation (RWA) [29], that for the case of radiation 

interaction, considers that the frequencies that are near 𝜔0 

contribute more for the transitions between states.  
 

| |At e gH E e e E g g     (12) 

The Hamiltonian used to represent the TLA is given in 

Eq. 12, where 𝐸𝑒 and 𝐸𝑔 are the energies of the excited (|𝑒⟩) 

and ground (|𝑔⟩) states, respectively. Also, the operators 𝜎+ 

and 𝜎− are introduced. When 𝜎+ is applied to |𝑔⟩, is yields 

to |𝑒⟩ and if 𝜎− is applied to |𝑒⟩ then the ground state is 

obtained. 
 

0( , )Tot At EM r t   H H H μ E  
(13) 

In order to compute the spontaneous emission for the 

system formed by the TLA placed above the non-local metal 

slab, is necessary to the address the Hamiltonian of this 

system, that is determined in Eq. 13. This Hamiltonian is 

derived [7][30] in the Dipole Approximation. The last term 

on the right side of the equation represents the interaction 

between the two unperturbed systems (TLA and metal slab), 

where 𝛍⃗⃗  is the electric dipole moment.  
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(14) 

 

Moreover, it is also resorted to the Golden Fermi Rule 

[31] to compute the emission rate Γ for the non-local SPP, 

whose expression may be seen in Eq. 14, where 𝐿 is the length 

of the slab sides, 𝛾 is the element of the electric dipole 

moment matrix, 𝑟0 is the distance between the two systems 

and 𝑘0 is the wave vector of the non-local SPP for which is 

obtained a frequency equal to 𝜔0. The plot of the emission 

rate for different values of 𝛽 is given in the Figure 6. As one 

may infer, the at 𝜔 = 𝜔𝑠𝑝 the emission rate is zero due to its 

dispersion relation (𝑘‖(𝜔𝑠𝑝) = 0). In addition, as we enter in 

the local limit, Γ regains the form of a Dirac delta that is 

obtained for the local response of the SPP in the quasi-static 

approximation. 

 
Figure 6: The graphic shows the plot of the Emission rate of the 

SPP in a non-local silver slab, for different values β . The red, blue, 

green and orange curves correspond to diffusion strengths of 
β

c
=

5 × 10−3, 
β

c
= 3.6 × 10−3, 

β

c
= 2 × 10−3 and  

β

c
= 10−3, 

respectively. 

The comparison of Γ𝑠𝑝 with the emission rate in free space 

is also discussed, for which it is verified that in the absence 

of the metal slab (free space) the emission rates are much 

lower, and in specific Γ𝑠𝑝 can achieve values 8000 times 

higher. 

  

5. QUANTUM INTERACTION 

 

The interaction that emerges between a TLA and local SPP, 

when placing the atom near a metal slab is examined in the 

electrostatic regime. Moreover, it is pretended to observe 

what are the possible states of the system and how its 

probability over the time evolves. It is assumed that the initial 

state is |𝑒, 0⟩ (where the right-side number corresponds to the 

number of photons in that state). 

The interaction between a quantum object and a quantized 

electromagnetic field imposes greats difficulties due to the 



treatment of the infinite modes that appear. Therefore, it is 

usual to consider the interaction of multi-level atoms with a 

few modes of the quantized radiation field [26][27]. These 

matter-bosonic interactions usually dispose of the Jaynes–

Cummings model [34], which gives the structure of the 

Hamiltonian for these interactions. However, this model uses 

the RWA, which does not allow the inclusion of strong 

coupling regimes.  
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Then, it was used the exact Hamiltonian already presented 

(in Eq. 13) in order to study the strong coupling regime. The 

problem of the radiation infinite modes can be circumvented 

by reformulating the Hamiltonian of the system in such a way 

that an analytical solution may be extracted. This formulation 

is only possible because it is considered the local description 

of the SPP in the electrostatic regime, since that all the wave 

modes are associated with the same frequency 𝜔𝑠𝑝. This 

degeneracy in the frequency makes possible this Hamiltonian 

reformulation, which results in Eq. 15, where 𝑔 =

𝛾∗√
ℏ𝜔𝑠𝑝

32𝜋𝜀0𝑟0
3  gives the strength of the coupling, and the 

normalized operators 𝒄̂†and 𝒄̂ are similar to the bosonic 

operators. Afterwards, a general wavefunction spanned in the 

eigenbasis of the unperturbed systems is used to solve the 

Schrödinger Equation. Moreover, the time evolutions of both 

unperturbed systems are included in this general 

wavefunction, which contains also a coefficient (time 

dependent) to comprise the evolution of the perturbation. 
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By applying the Hamiltonian to the initial state |𝑒, 0⟩ is 

seen that the only new state that appears is |𝑔, 1⟩. If this 

process is repeated iteratively one may notice that the only 

states that are obtained are |𝑒, 2𝑛⟩ and |𝑔, 2𝑛 + 1⟩ for 𝑛 ∈ ℕ. 

This means that the system can only have even number of 

photons and be in the excited states simultaneously or be in 

the ground state and have an odd number of photons. Hence, 

the Schrödinger Equation leads to the system of the linear 

differential equations given in Eq. 16 and Eq. 17. Using a 

truncation for the coefficients enables the computation of a 

solution.  

Therefore, the probabilities of the states in the excited 

(𝑃𝑒(𝑡)) and ground (𝑃𝑔(𝑡)) atomic state is plotted for two 

different regimes: the weak coupling regime (in Figure 7) and 

the strong one (Figure 8). As one may verify, the rate of the 

oscillations in the strong coupling is much higher than the one 

in the weak regime. Moreover, is seen that fir the weak 

coupling the oscillations are smooth while for the other 

regime the variations are more abrupt. This is explained 

through the interference provoked by the frequency spectrum 

of each individual state when combined.   

In fact, for the strong coupling regime the number states 

with significant probability of being excited is higher in 

comparison to the weak regime. This implies that the number 

of states needed to reproduce accurately the system dynamics 

is also higher. Indeed, in the weak coupling scenario, besides 

the two first coefficients all the other states may be neglected 

whilst having a good representation of the system. This 

explains why the RWA should only be used in the weak 

regime. 

 
Figure 7:Plots of the probabilities Pe(t) (orange curve) and Pg(t) 

(blue curve), for a distance r0 = 10 nm and considering a Rydberg 

atom with γ = 1212 × 10−30 C.m. 

 

Figure 8: Plots of the probabilities Pe(t) (orange curve) and Pg(t) 

(blue curve), for a distance r0 = 1 nm and considering a Rydberg 

atom with γ = 1212 × 10−30 C.m 

To corroborate these affirmations, is plotted the 

probability of the third and fourth coefficient for the case of 

weak (Figure 9) and strong (Figure 10) coupling, to see for 

each of the cases its contribution is relevant.  

 



 
Figure 9: Plots of the probabilities |c1(t)|

2
 (orange curve) and 

|c̃1(t)|
2
 (blue curve), for a distance r0 = 10 nm and considering a 

Rydberg atom with γ = 1212 × 10−30 C.m 

 
Figure 10: Plots of the probabilities |c1(t)|

2
 (orange curve) and 

|c̃1(t)|
2
 (blue curve), for a distance r0 = 1 nm and considering a 

Rydberg atom with γ = 1212 × 10−30 C.m 

The study of this interaction accounting with losses is also 

conducted, where the losses come from the spontaneous 

emission phenomenon. Hence, it is used the emission rate to 

define a new phenomenological frequency 𝜔0
′′ =

Γ

2
. The 

procedure to include the losses is by solving the system in the 

lossless regime and afterwards multiply the coefficients by 

𝑒−𝜔0
′′𝑡 . This study is divided in the strong and weak coupling, 

where the used emission rates were 20THz and 800 THz, 

respectively. As is seen in Figure 11 for the weak coupling 

and in Figure 12 for the strong coupling, the probabilities 

𝑃𝑒(𝑡) and 𝑃𝑔(𝑡) present more oscillations for the weak 

regime, before all the energy is dispersed. Since the only 

parameter that was altered was the distance 𝑟0 in the 

calculation of 𝑔̃ and the emission rate, then this implies that 

the variation of the emission rate is stronger than the variation 

of 𝑔̃. Indeed, the emission rate increases exponentially with 

the decreasing of the distance, while that 𝑔̃only increases 

with a magnitude of  3/2.  

 
Figure 11: Plots of the probabilities Pe(t)(blue curve) and Pg(t) 

(orange curve), in the weak coupling regime (r0 = 10 nm and Γ =
20THz. It was used γ = 100 × 10−30 C.m. 

 

Figure 12: Plots of the probabilities Pe(t)(blue curve) and Pg(t) 

(orange curve), in the weak coupling regime (r0 = 1 nm and Γ =
20THz. It was used γ = 100 × 10−30 C.m 

 

6. CONCLUSIONS 
 

The purpose of this report was to study the interaction 

between a TLA and SPP, where the former is placed in the 

vicinity of the metal slab, which supports SPP waves. To 

accomplish this objective, it was assumed a local response of 

the metal slab and the quasi-static approximation for the 

system. 

Another parallel objective for this work was to 

comprehend how the introduction of the nonlocality in the 

permittivity response of the SPP affects its propagation and, 

in specific, its dispersion relation. This analysis is made in 

comparison with the analogous local response, where for the 

sake of simplicity is considered the electrostatic regime in 

both scenarios.  The study of the interaction between the TLA 

and the SPP waves was performed by analyzing the two 

systems individually as an initial approach. 

About the quantization of the electromagnetic field, is 

seen that, for each radiation mode, a quantum harmonic 

oscillator can be associated. Moreover, the introduction of the 

bosonic operators leads to a discrete set of eigenenergies that 

are equally spaced and present a lower bound designated by 

ground state. In addition, the quantization of the surface 

plasmon is possible due to the quasi-particle feature involving 



these collective charge oscillations. Nevertheless, the 

quantization of the SPP in the local model is different from 

the one with spatial dispersion. However, the main difference 

lies on the normalization of the eigenmodes, where different 

formulas are used. 

For the spatial dispersive SPP, the diffusion effects are 

included in the permittivity via the phenomenological 

parameter 𝛽 and using the Hidrodynamic model. This 

nonlocality means that the response of the permittivity in a 

given point depends not only of its response in that point but 

also in its surrounding region. The difficulty on the analysis 

of the system is surpassed by considering a solution formed 

by the sum of planar waves in the k domain. Consequently, 

the permittivity acquires a dependence on the wave vector 

and it may be expressed as sum of a longitudinal and 

transverse permittivity. From Eq. 7, one may notice that the 

spatial dispersion only affects the longitudinal component. 

Also, through the Gauss's law, an additional wave solution is 

observed, which is obtained by making this longitudinal 

component equal to zero. 

To obtain the dispersion relation for the non-local SPP is 

necessary to use an ABC besides the habitual Maxwellian 

boundary conditions. This additional condition emerges due 

to the new degrees of freedom that arise in the medium due 

to its non-homogeneity. A usual procedure to resolve the 

arbitrariness in the ABC choice is using constraints (with 

physical meaning) either for the charge density or the current. 

Regarding the dispersion relation for the spatial 

dispersive medium in the quasi-static regime, it is seen that 

the value of 𝜔 is not constant for all the wavenumbers, in 

opposition to what happens in the local analogous. Also, in 

the latter the only frequency that supports waves is 𝜔𝑠𝑝. The 

monotonic curve of the non-local SPPs presents a slight 

positive slope, and the null wavevector is observed at 𝜔 =
𝜔𝑠𝑝, consequently implying that the propagation is made for 

frequencies above the surface plasmon resonance. By the 

dispersion formula one can deduce that if  𝛽 increases, so 

does the slope of the curve. The computation of the DOS for 

the non-local SPP confirms that the infinite number of states 

found for the local model (given by ∼ 𝛿(𝜔 − 𝜔𝑠𝑝) ) is 

redistributed over frequencies above 𝜔𝑠𝑝. 

Regarding the atom description, in this study was 

employed the simplification of the TLA in order to quantize 

the atom. In this approximation, is assumed that the only 

relevant eigenenergies are the ground state and the one 

immediately above in terms of energy. The arguments that 

support this approximation lie on the consideration that an 

external radiation field must have a frequency close to the 

atomic frequency relatively to these two states considered. 

Moreover, the frequency of the radiation must be detuned 

from frequencies associated with the neglected atomic levels. 

It was also considered the Dipole Approximation, which 

states that for wavelengths of the electric field much larger 

than the atomic dimensions, the field can be said constant 

over the atom's region. 

 

The solutions for the problem proposed was solved in a 

basis formed by the tensorial product of the eigenstates of the 

unperturbed systems TLA and local SPP. In addition, it was 

considered that the solutions of the new system could be 

obtained by incorporating the time evolution of the 

unperturbed systems in the solution. The incorporation of the 

𝐇̂𝐈𝐧𝐭 time evolution is done by including an additional 

coefficient (time dependent). This problem in the electrostatic 

regime gives origin to a system of differential linear 

equations that may be solved using the truncation of the 

coefficients above a chosen number. Also, the solutions of the 

system, given the initial state |𝑒, 0⟩, are of the form  |𝑒, 2𝑛⟩ 
and |𝑔, 2𝑛 + 1⟩ (𝑛 ∈ ℕ). Thus, the only states that can appear 

in this system in the atomic excited state correspond to states 

having an even number of photons and being simultaneously 

in the ground state. This solution would be inverted if the 

initial state was|𝑔, 0⟩. 
The solutions obtained were evaluated in the weak and 

strong coupling regimes. The main conclusion that is 

extracted for the weak regime in resonance (𝜔 = 𝜔𝑠𝑝) is that 

the number of states relevant to describe the dynamics of the 

interaction are mainly |𝑒, 0⟩ and |𝑔, 1⟩, which means that the 

system presents adversities to transit to the above states. 

Because of the small interference with higher states, the 

oscillation in the probabilities 𝑃𝑒(𝑡)) and 𝑃𝑔(𝑡) are smooth 

and similar to the sinusoidal Rabi oscillations, addressed for 

the classical described radiation wave. Hence, the RWA 

represents a good approximation in these conditions. 

However, in the strong coupling at the resonance, the 

number of coefficients, whose contribution entails most of 

the system evolution, is superior to the one found in the weak 

coupling regime. Also, the probability of each state oscillated 

much faster is higher in this regime (strong coupling). The 

contribution of more states explains why the probabilities 

𝑃𝑒(𝑡) and 𝑃𝑔(𝑡) have a non-smooth variation over the time, 

since the sum of the different frequency spectra for each state 

will cause interference effects. For this case, the RWA 

exhibits large discrepancies when compared to the real 

solution.  

The interaction accounting with channel losses is also 

examined, where its inclusion is done through the emission 

rate phenomenon. The latter is derived using the Fermi 

Golden Rule, which consists in the first order term of the Time 

Dependent Perturbation Theory. Furthermore, it was also 

employed the RWA in order to keep the terms of 𝐇̂𝐈𝐧𝐭 that are 

associated with energy conservation. The results of the 

emission rate for the non-local SPP show a peak for 

frequencies near the surface plasmon resonance. The effect 

of the spatial dispersion in the emission rate is that for larger 

diffusion effect, the peak becomes wider and its maximum 

amplitude decreases. Therefore, in the local limit is possible 

to infer that the emission rate obtained will become a Dirac 

delta, which is in concordance to the local result. 



In conclusion, the spatial dispersive response allows to 

frequencies above the 𝜔𝑠𝑝 to support wave modes, which is 

intimately linked with the new longitudinal wave solution 

that appears for 𝜀𝐿(𝜔, 𝑘⃗ ) = 0. On the other hand, this implies 

that the DOS in the non-local case is redistributed over a 

wider interval of frequencies and consequently the emission 

rate at 𝜔𝑠𝑝 is no longer given by a result proportional to 

𝛿(𝜔 − 𝜔𝑠𝑝). 

For future work, it may be developed a more accurate 

description of the spatial dispersion for the surface plasmons, 

e.g., using other terms [35] that enable a better fit to the 

experimental data. Also, the study of the interaction of this 

plasmonic apparatus with a more interesting and complex 

system may be taken, like a multi-level atom with a degree 

higher than two. Then, a discussion about the dynamics of the 

new system in strong and weak coupling, as well as 

contrasting results with the TLA, should be extended. 

Another development that could be made is the inclusion 

of other loss channels besides the ones already considered 

due to the emission rate. For example, it could be accounted 

the energy that is dispersed in the medium, which was 

initially introduced by the damping term in the permittivity. 

This introduction would need to be done in a heuristically 

way since the losses usually imply that the system's 

Hamiltonian loses its Hermitian property. 

The interaction between the SPP waves and the TLA 

described in this dissertation, but for the case where the 

medium has an anisotropic response, could also lead to an 

interesting problem. 
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